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Abstract

In order to model the behaviour of concrete structures under blast loading, it is essential to be able to model the
dynamic strength and other strain rate dependent properties of the concrete material. In this paper, a constitutive model
for predicting the dynamic strength and damage of concrete subjected to blast loading is developed. The model stems
from the continuum fracture mechanics of microcrack nucleation, growth and coalescence to formulate the evolution of
damage. The concrete is assumed as homogeneous continuum with pre-existing microcracks. Damage to concrete is
defined as the probability of fracture at a given crack density, obtained by integrating a crack density function over
time. Based on the damage function, the stress response at a particular time, and hence the dynamic stress—strain re-
lationship, can be established for a given strain-rate. The required material constants representing initial crack pro-
perties are derived from material dynamic strength tests. Comparison with available test results shows that the
proposed model can give consistent prediction of the dynamic behaviour of concrete materials. Nominal fragment sizes
of concrete and fracture strain energy are also derived which can be useful in an energy-based concrete break-up and
debris throw prediction procedure.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The possibility of accidental explosions is present wherever explosives are stored. Of particular concern
over the harmful physical effects of an accident is the concrete debris throw, which can be a governing
factor on the safe siting distance of aboveground ammunition magazines and other explosives storage
facilities. Experimental and analytical studies in recent years have led to the development of some con-
ceptual and empirical approaches for the prediction of initial debris parameters and debris throw distance.
However, these approaches have limited applications due to the fact that they do not involve physical
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modeling of the process of material breakup and the formation of fragmentation. In order to bridge this
gap, modeling the constitutive dynamic behaviour of concrete material under high loading rate is necessary.

Under blast loading, the concrete damage and fragmentation result from both impulsive loading by
stress waves and gas-driven fracture propagation. Studies (Simha et al., 1987; Hommert et al., 1987;
Brinkman, 1987) tend to support the view that stress waves generated by the detonation of an explosive
charge are responsible for the development of damage zone in the concrete material and the subsequent
fragment size distribution, while the explosion gases are important in the separation of a crack pattern that
has already been formed during the passage of the stress wave, and in the subsequent launch of the
fragments. Fragment formation is deemed to be a much slower process than the propagation of the stress
wave; however, there is evidence that the fragment size is determined immediately after the passage of the
stress wave and long before the gas penetration and throw movement take place (Brinkman, 1987; Zhao
et al., 1993). The findings by Wilson (1987) suggest that the information about fragment size distribution
during shock loading is important since the majority of fragments are formed in this stage. In other words,
the fragment formation is under very high loading rate; hence, the strain-rate effect on material properties
plays an important role in the breakup and fragmentation process.

Concrete is a typical brittle material and its dynamic behaviour is strain-rate dependent. As with most
brittle materials, such strain-rate dependence may be derived from evolution of damage based on fracture
mechanics. This paper presents a model for damage and fracture of concrete and mortar materials under
dynamic loading. In the model, the concrete is assumed in a macroscopic view as homogeneous continuum
with pre-existing microcracks. The evaluation of damage is formulated based on the continuum fracture
mechanics of microcrack nucleation, growth and coalescence. Based on the damage function, the stress
response at a particular time, and hence the stress—strain relationship, can be established for a given strain-
rate. The required material constants representing initial crack properties can be derived from material
dynamic property tests. Comparison with available test results shows that the proposed model can give
consistent prediction of the dynamic behaviour of concrete materials. The nominal fragment sizes of
concrete and fracture strain energy are also derived.

2. A continuum model for damage and fracture of concrete materials

When the loading rate is high, the mechanical response of a material is generally different from that at a
low loading rate. Such rate dependence is observed for nearly all the brittle materials (Clifton, 2000).
Concrete exhibits also an enigmatic phenomenon of increased resistance when it is loaded at a very high
rate.

Generally speaking, the total energy, U, for a brittle body subjected to some external surface traction
and undergoing crack development can be expressed as

U=Uy+ U + U (1)

where U is the elastic strain energy which can be obtained through integration of stress or strain (rate
dependent) in the body, U, is the surface energy necessary for the formation of crack surfaces in the body,
which can be obtained by introducing a cohesive crack model, and Uy is the kinetic energy in the system due
to fragment motions. For the evaluation of fracture and formation of fragments, the elastic strain energy
will be critical.

In some early continuum models for brittle materials (Grady and Kipp, 1980; Taylor et al., 1980;
Kuszmaul, 1987), it is assumed that microcracks initiate and grow immediately when the strain becomes
tensile. In more recent studies (Zhang et al., 2001; Liu and Katsabanis, 1997), a critical strain value was
proposed based on the experimental observation that brittle materials (such as rock) do not fail at tensile
stresses below their static tensile strength. It was demonstrated that the use of the critical value makes it
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possible to obtain a stable solution which confirms the theory of explosive energy partitioning in brittle
materials. This consideration is also adopted in the present study of concrete materials.

Experimental results have indicated that the dynamic Young’s modulus of concrete increases with strain
rate in the very high strain rate regime (e.g. 100 s~' and higher) (Grote et al., 2001; Tedesco and Ross,
1998). An appropriate theory to explain this phenomenon is yet to be established. In the present study, the
dynamic Young’s modulus is assumed to vary with strain rate in an exponential function based on available
test results. Thus, considering the degrading effect at fracture, the dynamic Young’s modulus, E4, can be
written as

Ed — ea%+b\3/§§E(lfD) (2)

where E is the Young’s modulus for the undamaged virgin material under quasistatic loading, D is a
damage scalar, ¢ is the strain rate, ¢ and b are constants which can be evaluated from test data, and

eVEertVP 21 The elastic strain energy for the damaged material subject to a uniaxial stress (Jean, 1991) can
therefore be expressed in a modified form as

Up =1 caVEHOVEE(1-D)i? 3)

where ¢ is a uniaxial strain that depends on the material and loading rate, Uy is the elastic strain energy.
Thermodynamic restrictions require that the tensile stress o be given by

_ % _ ea%#»h\}/é_zE(lfD)s (4)
Oe
It is not possible to describe the contribution of each microcrack in degrading the material stiffness.
However, with the development in statistical fracture mechanics, the damage scalar D may be defined in
terms of the volume of idealized penny-shaped cracks in the material as (Grady and Kipp, 1980)

D =NV (5)

where N is the number of cracks per unit volume or crack density, V' = 3m is the spherical region sur-
rounding the penny-shaped crack of radius r that approximates the stress-relieved volume due to the
traction-free boundary of the crack. For isotropic damage, D varies in the range of 0—1, with D = 0 cor-
responding to the virgin material without damage, and D = 1 corresponding to the initiation of macro-
crack. Intermediate values of D correspond to the partially damaged material.

As mentioned before, considering the fact that certain time duration is needed for fracture to take place
when a brittle material like concrete is subjected to a stress higher than its static strength (Zhang et al., 2001),
the evolution of damage can be determined by the number of cracks activated at the time ¢ as follows:

D(t) = / NVt —s)ds (6)

where ¢, is the time duration needed for the tensile strain ¢ to reach the critical value &,. For uniaxial
tension, &, = oy /E, with gy being the static tensile strength. N is the crack density increment. According to
Yang et al. (1996),

N = oe — 8“)/; (7)

where o is used to describe the nucleation of the microcracks at a certain strain level. § is material constant
which determines the stain rate dependence of crack density increment. Obviously the crack density in-
crement vanishes if the tensile strain ¢ < eg,.

The volume V(¢ — s) can be determined by a microstructure law to correspond to the growth of cracks
that are activated at past time, s,
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4 5 4 3
V(t—s) =3 :§ncg(t—s) (8)
where c, is the crack growth velocity and generally 0 < ¢, < ¢, with ¢; being the elastic wave speed (Miller
et al., 1999). Substituting Egs. (7) and (8) into Eq. (6), a general expression for the damage growth can be
obtained

4 t

D(t) = gomc;/t (6 — o)’ (1 —5)ds 9)
Assuming a constant strain rate &, and hence ¢(¢) = &y, the expression for damage growth becomes

4 s [ .

D(t) = gancésgj (s — 1)/ (t — 5)°ds = mél(r — 1)+ (10)

where
8mcyo
m= (11)
B+DB+2)(B+3)(B+4)

The dynamic fracture strength is defined as the maximum stress in a material before failure due to fracture.
With the assumption of constant strain loading rate, from Egs. (4) and (10), it has

o= e"%}b\}/gEéot for t< ¢, (12)
o = eVEVRE 1 — mib(t — 1) for o < 1<t (13)

Eq. (13) can be differentiated with respect to time. Subsequently, the time instant #, that corresponds to the
maximum stress can be determined by setting the differentiation equal to zero, and hence the following
equation

méh(tn — 1) Pt — 1o + tn(f+4)] = 1 (14)

The value of  and m for a particular brittle material such as concrete can be evaluated from the dynamic
strength test data. Once f§ and m are available, the dynamic stress—strain relationship can be determined
according to Egs. (12) and (13).

The higher dynamic strength at higher strain rates is consistent with the observed test results. Rate effects
leads to higher strength but the failure process becomes more brittle. The post-peak failure becomes more
unstable and the mechanism with which the material behaves at this stage significantly differs from the pre-
peak response. According to Reinhardt et al. (1990) and Mindess (1983), there is a process zone of mi-
crocracking ahead of the tip of the macrocrack of concrete material. During the crack propagation, the
energy barriers delay the total failure of material. Consequently the heterogeneity affects the shape of the
softening zone considerably. This observation agrees with the experimental results reported by Shah and
John (1986) and Yon et al. (1991).

Herein a cohesive crack model is used to model the material softening process. Cohesive crack will be
formed in the direction normal to the maximum primary stress when the maximum primary stress reaches
om. The stress on the microcrack surface is related to the nominal strain. The normal stress o is a decreasing
function of strain, and the surface where 0 < ¢ < g, is called process zone or craze. ¢ vanishes when the
normal strain is larger than the material parameter & which represents a nominal cohesive strain limit, and
the surface when ¢ > ¢ is called macrocrack. On the macrocrack, no interaction is assumed between the two
surfaces, i.e., ¢ = 0. If the cohesive strain increases from 0 to &, the energy change will be equal to
f(f ode = G1. In case of a linear variation of cohesive stress and strain, the area of the triangle { = %6m§
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denotes energy change per unit crack length from cohesive crack into opened crack. ¢ is the stress that can
be developed by cohesive crack model. This can be expressed mathematically by

& =0— (G +he) <0 (15)
=0, /=0 (16)
where h = —&,, /&, G 1s the maximum dynamic stress occurring at time 4,, & is a material parameter rep-

resenting a nominal dynamic cohesive strain limit. 4 indicates the craze hardening modulus which is negative
for softening. The pointed symbol denotes the increment. Based on the research by Weerheijm (1992)
regarding the softening of concrete under tension, the dynamic cohesive strain limit & can be expressed
by

N\ —0.042
_ _ &
&= &y * ( 8_ ) (17)

where & is a reference static strain rate and here it is taken to be & =4 x 107¢ s7!, & is the nominal static
cohesive strain limit for concrete and according to Holmquist et al. (1993), &, = 0.01. The dynamic soft-
ening curve can therefore be expressed as

_ k
c =0, - 1(8_58““) t> ty (18)

where &, is the critical strain at the dynamic maximum stress. £ can be determined by fitting to the ex-
perimental post-peak softening curve.

Based on the dynamic strength of the concrete material established earlier, the fragmentation can be
evaluated by applying the method proposed for rock materials (Grady and Kipp, 1980; Zhang et al., 2001),
as follows. It is known that fragments are associated with crack initiation, propagation and coalescence.
Thus, it is necessary to know the crack size in order to predict the fragment size. Hence, the damage defined
by Eq. (6) is expressed in terms of the distribution of crack size as

cg(t—te)
D(t) = / o(r, 1)dr (19)
0
where
3
o(r,f) = 4;; it — 1. —r/cy)’ (20)
g

is the damage or crack volume fraction distribution. r is the penny shaped crack radius.

Fragmentation is deemed to occur when the stress reaches the material dynamic strength &,,, which
corresponds to time #,. At fracture coalescence, the fracture faces form the fragment sizes. Noting that the
crack radius r = L/2 with L being the nominal fragment size, the fragment size distribution can be obtained
as follows:

F(L) = 5 o(L/2, 1) (1)
Substituting Eq. (20) into Eq. (21) yields

nal?
FL) =
12¢,

&fltm — 1 — L/ (2¢5)) (22)
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To determine the strain rate dependence of the dominant fragment size (fragment size corresponding to
the largest volume fraction of material), the fragment size distribution (L) can be maximized with respect
to the fragment size L. It is found that the fragment size distribution F(L) has a maximum when

B 6c,
m—ﬂ_’_?’

This expression describes the strain rate dependence of the dominant fragment size.

(tm — 1) (23)

3. Energy formulation
The strain energy of material upon fracture coalescence can be written as

tl"ﬂ
Uoz/udV:// odedV (24)
v vJo

in which the strain energy density

tm tc fm
u:/ ad8:/ Eééth—/ E&[1 — mél(t — 1) ]eds
0 0 e

1 Emé[f+2 o p+6 1 o p+5
—_E&P —— 0 (zm - ‘) - Eméi*t, (tm - ) 25
2 T S (B o\ Eg 0 (23)

The fracture softening strain energy can be described as

&+ém
UC:/quV:// odedV (26)
V VJem

in which the strain energy density

&+&m 1 1
- = = 0n € 2_m __—_m__m_—_m_2 2
Ue /sm ade X (64 2&n)e 1 e~ Oné (27)

The kinetic energy of debris can be obtained from Eq. (1)
Uy =U— U — U, (28)

where U is the input total energy, Uy is the elastic strain energy and U, is fracture softening strain energy.
Subsequently, the debris throw velocity can be determined.

4. Modeling results

The above described theoretical procedure is applied to model the dynamic behaviour of concrete
materials in conjunction with pertinent experimental data. The experimental results used to derive the
material parameters include concrete and mortar under tensile and compressive loading. The mortar is
regarded as representing the matrix phase of concrete. Based on the test data, the parameters a and b in Eq.
(2) are evaluated to be a = —0.08502 and b = 0.01441 and the corresponding dynamic Young’s modulus
function curve is shown in Fig. 1. It is noted that the initial dynamic Young’s modulus values are taken at a
stress level immediately below the quasistatic strength. The damage is considered equal zero at this stage
under dynamic loading.
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Fig. 1. Variation of Young’s modulus with strain rate.

The measured dynamic strength and static strength data are employed to evaluate the material constants
p and m according to Eq. (14). The results are then applied in the theoretical model to predict the dynamic
strength and establish the dynamic stress—strain relationships for the materials under varying strain loading
rate, as well as the fragment size and the fracture strain energy.

It should be pointed out that the damage in concrete under compression essentially is also related to
crack growth and coalescence; therefore, the basic model developed in the previous section is also imple-
mented for concrete/mortar materials under compression. In this respect, however, the value of 7. ought to
be determined according to the quasistatic compressive strength instead of the tensile strength, while the
static nominal cohesive strain limit, which in the case of compression implies the compressive strain
corresponding to lateral fracture, is taken to be &y, = 0.01/v ~ 0.01/0.18 = 0.05, where v is the Poisson’s
ratio.

4.1. Concrete under tension

In the dynamic tests of concrete material under tension and compression reported in (Tedesco et al.,
1993; Ross et al., 1995), the concrete material had a quasistatic tensile strength oy = 3.86 MPa, Young’s
modulus E = 27 GPa, and mass density p = 2400 kg/m3. Poisson’s ratio is estimated to be v = 0.18. Fig. 2
shows the measured dynamic to (quasi) static strength ratio as a function of the logarithmic strain rate (the
strain rate for the quasistatic strength is on the order of 107°~107°). Based on these data, the material
constants are evaluated to be f = 10, and m = 8.1 x 10¥ according to Eq. (14). With these values, the
dynamic stress—strain relationship at a given strain rate ¢ can be established using Egs. (12), (13) and (18).
Fig. 3 shows the resulting dynamic stress—strain relationship for concrete under tension for various constant
strain rates. The predicted dynamic strength to static strength ratios are compared with the test results in
Fig. 2, whereby some other test results outside those used for the evaluation of f and m are also included
(Weerheijm, 1992; Ross et al., 1995). It can be observed that the predicted values agree very well with the
collective experimental data. As can be seen, at a strain rate of order of 10 s~!, the dynamic tensile strength
of concrete increases to 3—4 times of the static tensile strength; and at strain rate of 100 s~!, the increase
reaches about 7.
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Fig. 2. Normalized dynamic concrete tensile strength vs. strain rate.
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Fig. 3. Predicted stress—strain curves for concrete under tension with different strain rates.

4.2. Concrete under compression

The concrete material for dynamic compression tests used for the evaluation of  and m had the same
static material properties as mentioned in the previous section. The nominal quasistatic compressive
strength from the various specimens was about 40 MPa. Fig. 4 shows the measured dynamic compressive
strength against the strain rate. By fitting the test data with Eq. (14), the material parameters 5 and m are
found to be B = 10, and m = 7.42 x 10¥7. Subsequently, the predicted dynamic compressive strength can be
obtained based on Eq. (13) and they are shown with the test data in Fig. 4. The predicted stress—strain

relationship of concrete under compression is compared with experimental results obtained by Donze et al.
(1999) in Fig. 5. A favourable agreement is observed.
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Fig. 4. Normalized concrete compressive strength vs. strain rate.
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Fig. 5. Compressive stress—strain relationships of concrete at different strain rates.

Comparing to the rate enhancement on the dynamic tensile strength, the strain rate effect on the dynamic
compressive strength appears to be much less significant. At a strain rate of order of 100 s~!, the dynamic
compressive strength is about 1.5 times of the static compressive strength as compared to the tensile
strength increase of 7 times at the same strain rate. However, it is interesting to note that if the rate en-
hancement is to be viewed in terms of the absolute strength increase, then the increases of strength under
tension and comparison are actually comparable.

4.3. Mortar under compression
The mortar specimens tested by Grote et al. (2001) under compression are considered. The mortar ma-

terial had static Young’s modulus £ = 20 GPa and a quasistatic compressive strength of approximately 46
MPa (Tedesco and Ross, 1998). The Poisson’s ratio is estimated at v = 0.2, and mass density p = 2100 kg/m?>.
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Fig. 7. Compressive stress—strain relationships of mortar at different strain rates.

The measured dynamic failure stress, shown in Fig. 6, increases with the strain rate in a similar manner as for
concrete.

Based on the measured dynamic strength data, the material parameters f§ and m for mortar under
compression are found to be f =7, and m = 3.16x 10%. The modelling results of the dynamic strength
using these f§ and m values are depicted in solid line in Fig. 6. Furthermore, the predicted dynamic stress—
strain relationships are compared with the available stress—strain curves from the mortar tests in Fig. 7. The
predicted stress—strain curves agree favourably with the experimental results.

4.4. Fragmentation and fracture strain energy

Having obtained the f§ and m values, the fragment size can be calculated using Eq. (23) as a function of
strain rate. For this purpose, an estimation of the damage growth rate needs to be given. A reasonable
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estimate of damage growth rate during the dynamic fracture is about 0.4 times the longitudinal wave ve-
locity (Grady and Kipp, 1980). The longitudinal wave velocity can be calculated according to the elastic
theory from the mass density, Young’s modulus and the Poisson’s ratio. Thus, for the concrete under
consideration the longitudinal wave velocity is calculated to be ¢, = 3495 m/s, and hence the damage
growth rate ¢, = 0.4c) = 1398 m/s; for mortar, ¢; = 3253 m/s and ¢, = 1301.2 m/s. Subsequently, the
fragment sizes for concrete and mortar are calculated and the results are depicted in Fig. 8(a). As can be
seen, the fragment size decreases with the increase of strain rate, as expected. The fragment size is on the
order of 10 mm at a strain rate of 100 s~'.

The fracture strain energy for concrete and mortar can also be determined by integrating the dynamic
stress—strain curves, according to Eqgs. (24) and (26). Fig. 8(b) shows the fracture strain energy density as a
function of strain rate. The fracture strain energy density increases with increasing strain rate. The in-
creasing rate of fracture energy is higher for concrete as compared with mortar. This may be attributed to
the contribution of large size aggregates in the concrete. Under high rate loading, the presence of aggregate
in the material could act to delay the crack propagation and coalescence, resulting in higher gain at high
strain rate than mortar.

60
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Fig. 8. Predicted fragment size and fracture energy vs. strain rate for concrete and mortar: (a) fragment size vs. strain rate, (b) fracture
energy vs. strain rate.
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5. Conclusions

A constitutive model for predicting the dynamic behaviour of concrete materials has been formulated
based on continuum fracture theory of microcrack nucleation, growth and coalescence. With respect to
experimental observation of increasing dynamic Young’s modulus at very high strain rate, an empirical
relationship of dynamic Young’s modulus to the strain rate is incorporated into the model. The model is
applied to concrete and mortar materials and the results are found to be consistent with the experimental
data. For the class of materials considered in the modelling examples, the material constants § and m are
found to be f =10, m = 8.1 x 10¥ for concrete under tension; = 10, m = 7.42x10*’ for concrete under
compression; and =7, m = 3.16 x 10* for mortar under compression. The subsequent dynamic stress—
strain relationships and the predicted dynamic strengths are found to agree favourably the experimental
results. Based on the ff and m values, the fragment size distribution and fracture energy with varying strain
rate are also obtained. The model provides a new perspective regarding the dynamic behaviour of concrete-
like composite materials under high rate explosive loading.

The proposed model should be valid for all strain rate range. However, since the model parameters
pertaining to the concrete materials (in particular § and m) are derived based on the experimental data at
relatively high strain rate, it is recommended that the predicted dynamic stress—strain curves be considered
for high loading rate applications with strain rate in a range of 1-1000/s, as may typically be encountered in
the case of concrete materials under blast loading.
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